

NOTES

A Novel Substance with TGF- β like Activity, Diheteropeptin, Produced by a Fungus, *Diheterospora* sp.

YUHTA MASUOKA, KAZUO SHIN-YA,
KAZUO FURIHATA[†], YOICHI HAYAKAWA
and HARUO SETO

Institute of Molecular and Cellular Biosciences,
The University of Tokyo,
Bunkyo-ku, Tokyo 113, Japan

[†]Division of Agriculture and Agricultural Life Science,
The University of Tokyo,
Bunkyo-ku, Tokyo 113, Japan

(Received for publication July 17, 1997)

Transforming growth factor- β (TGF- β) first discovered as a trophic factor to several kinds of cells¹⁾ is now well known to act as a growth inhibitor to various kinds of animal cells²⁾. In addition, TGF- β protects neuronal cells from damages caused by stress such as L-glutamate toxicity and β -amyloid toxicity which are considered to be associated with brain ischemia injury and Alzheimer's disease, respectively^{3,4)}. Thus, substances which mimic TGF- β action are expected to be useful for treatment of diseases such as ischemia injury.

For detecting TGF- β like activities, we constructed a screening system utilizing reporter gene expression. Mink lung epithelial (Mv1Lu) cells, which express excess TGF- β receptors and respond to TGF- β resulting in the expression of plasminogen activator inhibitor-1 (PAI-1)⁵⁾, were transfected with the firefly luciferase reporter gene at the downstream of the PAI-1 promoter gene⁶⁾. During the course of our screening using this system, we isolated histone deacetylase inhibitors such as trichostatin A⁷⁾. Further investigation has resulted in the isolation

of a novel metabolite with TGF- β like activity, diheteropeptin (**1**, Fig. 1). We report herein the fermentation, isolation and structure determination of **1**.

The diheteropeptin producing organism, identified as *Diheterospora* sp., was cultivated in a medium containing glucose 2.0%, maltose 3.0%, corn steep liquor 1.0%, polypeptone 0.3%, soybean meal 1.5% and NaCl 0.3% (pH 7.0) for 5 days at 24°C on a rotary shaker. The active principle was extracted from broth filtrate (2 liters) with EtOAc. The solvent layer was dried over Na₂SO₄, and concentrated to give an oily residue. Then, it was purified successively by silica gel column chromatography (CHCl₃ - MeOH = 30 : 1) and Sephadex LH-20 column chromatography (CHCl₃ - MeOH = 1 : 1). A pure sample of **1** was finally obtained by HPLC using a PEGASIL ODS column (Senshu-Pak, 20 i.d. × 250 mm) developed with 65% MeOH.

The physico-chemical properties of **1** are summarized in Table 1. The molecular formula of **1** was established as C₂₈H₄₂N₄O₆ by high-resolution FAB-MS spectrum. IR absorptions at 3300 ~ 3400, and 1660, 1670 and 1680 cm⁻¹ implied the presence of -OH, -NH and amide functions. Together with the IR absorptions, amide carbons observed in the ¹³C NMR (171.9, 172.8, 174.4 and 175.6 ppm) suggested **1** to be a peptide derivative. The ¹H and ¹³C NMR spectral data are shown in Table 2.

Analysis of the DQF-COSY spectrum of **1** revealed a monosubstituted benzene residue and the sequence from an amide proton at 7.50 ppm to methylene protons 3'-H (2.94, 3.25 ppm) through an α -methine proton 2'-H (5.15 ppm). An amide carbonyl carbon C-1' (172.8 ppm) was long-range coupled to 2'-H and 3'-H, which were in turn long-range coupled to C-4' (137.0 ppm) and C-5'

Fig. 1. Structure of diheteropeptin (**1**).

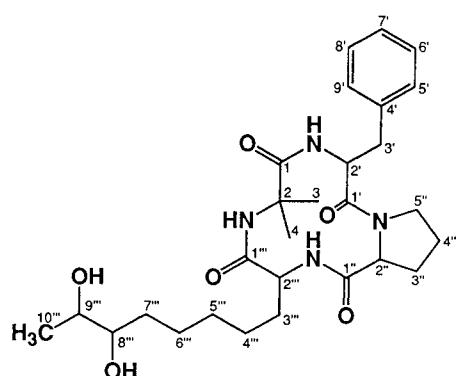


Table 1. Physico-chemical properties of diheteropeptin (**1**).

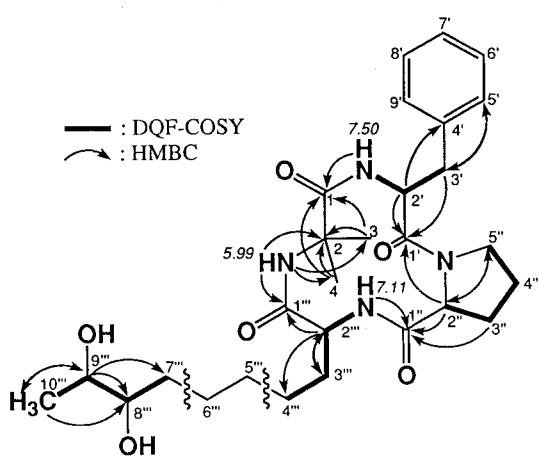
Appearance	White powder
MP	74 ~ 76°C
[α] _D ²⁵	-30.3° (c 0.19, MeOH)
Molecular formula	C ₂₈ H ₄₂ N ₄ O ₆
HRFAB-MS (<i>m/z</i>)	
Found	531.3188 (M+H) ⁺
Calcd	531.3183
UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ϵ)	203 (10,900), 233 (sh, 2,000)
IR ν_{max} (KBr) cm ⁻¹	3400, 3300, 1680, 1670, 1660, 1620, 1520

Table 2. ^1H and ^{13}C NMR chemical shifts of diheteropeptin (**1**) in CDCl_3 .

No.	δ_c	δ_h
^t Aib	1	175.6
	2	58.8
	3	23.6
	4	26.5
	NH	1.76 (s) 1.33 (s) 5.99 (s)
Phe	1'	172.8
	2'	53.4
	3'	35.8
	4'	137.0
	5', 9'	129.0
	6', 8'	128.6
	7'	126.7
	NH	7.21 (d, $J = 7.0$) 7.26 (t, $J = 7.0$) 7.19 (d, $J = 7.0$) 7.50 (d, $J = 10.0$)
Pro	1"	171.9
	2"	57.8
	3"	24.7
	4"	25.0
	5"	47.0
^t Add	1'''	174.4
	2'''	54.4
	3'''	28.8
	4'''	29.1
	5'''	25.2
	6'''	25.2
	7'''	33.1
	8'''	76.1
	9'''	70.9
	10'''	19.5
	NH	4.65 (dd, $J = 2.0, 8.0$) 1.76 (m), 2.32 (m) 2.16 (m) 3.21 (dt, $J = 7.5, 10.0$), 3.85 (ddd, $J = 4.5, 8.0, 10.0$) 4.18 (dt, $J = 7.5, 10.0$) 1.63 (m), 1.82 (m) 1.29 (m), 1.39 (m) 1.38 ⁺⁺ (m) 1.38 (m), 1.48 ⁺⁺ (m) 1.38 (m), 1.48 (m) 3.32 (m) 3.59 (dq, $J = 6.0, 6.5$) 1.19 (d, $J = 3.0$) 7.11 (d, $J = 10.0$)

¹H and ¹³C NMR spectra were recorded at 600 MHz and 150 MHz, respectively.

[†] Aib : α -aminoisobutyric acid, Add : 2-amino-8,9-dihydroxydecanoic acid


⁺⁺ These two assignments are exchangeable.

(129.0 ppm), respectively, in the HMBC spectrum of **1**.

These results established a phenylalanyl moiety in Figure 2.

The proton spin system from 2"-H (4.65 ppm) to 5"-H (3.21, 3.85 ppm) through 3"-H (1.76, 2.32 ppm) and 4"-H (2.16 ppm) was detected in the DQF-COSY spectrum, and C-2" (57.8 ppm) and C-5" (47.0 ppm) were long-range coupled to their appended protons 5"-H and 2"-H, respectively. Moreover, 2"-H and 3"-H were long-range coupled to an amide carbonyl carbon C-1" (171.9 ppm). These long-range couplings and the chemical shifts of C-2" and C-5" proved the presence of a prolyl moiety (Fig. 2). Two singlet methyl protons 3-H (1.76 ppm) and 4-H (1.33 ppm) were long-range coupled to C-2 (58.8 ppm) and an amide carbonyl carbon C-1 (175.6 ppm). In addition to these correlations, long-range couplings from an amide proton at 5.99 ppm to C-2, C-3 (23.6 ppm) and C-4 (26.5 ppm), revealed the presence of an α -aminoisobutyryl skeleton (Fig. 2).

Fig. 2. ^1H - ^1H and ^1H - ^{13}C correlations revealed by DQF-COSY and HMBC experiments of diheteropeptin (1).

The only residual amide function was revealed by long-range couplings from 2"-H (4.18 ppm) to an amide carbon C-1" (174.4 ppm) and methylene carbons C-3"" (28.8 ppm) and C-4"" (29.1 ppm); this sequence being also supported by proton spin couplings from an amide proton at 7.11 ppm to 4"-H (1.29, 1.39 ppm). The alkyl side chain linked to C-4"" was determined as follows. In the DQF-COSY spectrum of **1**, a proton spin system from methylene protons 7"-H (1.38, 1.48 ppm) to a methyl proton 10"-H (1.19 ppm) was recognized through methine protons 8"-H (3.32 ppm) and 9"-H (3.59 ppm) which were concluded to be attached to oxygenated carbons from the relevant ^{13}C chemical shifts. Accordingly, the remaining two methylenes were attributed to C-5"" (25.2 ppm) and C-6"" (25.2 ppm). Thus, this amino acid residue was elucidated to be 2-amino-8,9-dihydroxydecanoic acid.

The connectivities among these amide functional units were established by long-range couplings from the amide protons to their neighbored carbonyl carbons, *i.e.*, the amide protons at 7.50 ppm, 5.99 ppm and 7.11 ppm to C-1, C-1"" and C-1", respectively (Fig. 2). A long-range coupling from 2"-H to C-1' revealed the relationship between the prolyl and phenylalanyl residues. Thus, the structure of **1** was determined to be a cyclic peptide (Fig. 2). **1** is structurally very similar to chlamydocin⁸⁾ that has the same tetrapeptidyl ring system with an epoxy ketone group instead of the 3-methyl-1,2-glycol function in **1**. The determination of the absolute stereochemistry of **1** is now under way.

In the evaluation system we employed, the addition of TGF- β at the concentration of 40 ng/ml to Mv1Lu cells increased the expression of luciferase three times. **1** induced the PAI-1 promoter gene expression more than three times at the concentrations from 0.98 μM to 1.0 mM. In order to compare the biological activities of **1** and chlamydocin that showed cytostatic activities, we evaluated the effect of **1** on the cell growth by measuring MTT reduction and LDH release⁹⁾. **1** exhibited the cytostatic effect to Mv1Lu cells with IC₅₀ value of 20.3 μM as determined by the MTT assay. No LDH release, however, suggested that **1** showed only the cytostatic activity to Mv1Lu cells. This biological activity pattern similar to that of TGF- β . Detailed investigations on other biological activities of **1** are now under way.

Acknowledgments

We are grateful to Dr. T. NATSUME of Mikoshiba Calciosignal Net Project, Exploratory Research for Advanced Technology (ERATO) for giving us Mv1Lu cells transfected with the luciferase reporter gene. This work was supported in part by a Grant-in Aid for Scientific Research (C) to K.S. This work was also supported in part by Research for the Future, Japan Society for the Promotion of Sciences and Grant-in-Aid for Cancer Research to H.S. The Ministry of Education, Science and Culture, Japan.

References

- 1) KRIEGLSTEIN, K.; C. SUTER-CRAZZOLARA, W. H. FISCHER & K. UNSICKER: TGF- β superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP⁺ toxicity. *EMBO J.* 14: 736~742, 1995
- 2) MOSES, H. L.; E. Y. YANG & J. A. PIETENPOL: TGF- β stimulation and inhibition of cell proliferation: new mechanistic insights. *Cell* 63: 245~247, 1990
- 3) PREHN, J. H. M.; V. P. BINDOKAS, C. J. MARCUCCILLI, S. KRAJEWSKI, J. C. REED & R. J. MILLER: Regulation of neuronal Bcl 2 protein expression and calcium homeostasis by transforming growth factor type β confers wide-ranging protection on rat hippocampal neurons. *Proc. Natl. Acad. Sci. U.S.A.* 91: 12599~12603, 1994
- 4) PREHN, J. H. M.; V. P. BINDOKAS, J. JORDAN, M. F. GALINDO, G. D. GHADGE, R. P. ROOS, L. H. BOISE, C. B. THOMPSON, S. KRAJEWSKI, J. C. REED & R. J. MILLER: Protective effect of transforming growth factor- β on β -amyloid neurotoxicity in rat hippocampal neurons. *Mol. Pharmacol.* 49: 319~328, 1996
- 5) LAIHO, M.; O. SAKSELA & J. KESKI-OJA: Transforming growth factor- β induction of type-1 plasminogen activator inhibitor. Pericellular deposition and sensitivity to urokinase. *J. Biol. Chem.* 262: 17467~17414, 1987
- 6) ABE, M.; J. G. HARPEL, C. N. METZ, I. NUNES, D. J. LOSKUTOFF & D. B. RIFKIN: An assay for transforming growth factor- β using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. *Anal. Biochem.* 216: 276~284, 1994
- 7) YOSHIDA, M.; M. KIJIMA, M. AKITA & T. BEPPU: Potent and specific inhibition of mammalian histone deacetylase both *in vivo* and *in vitro* by trichostatin A. *J. Biol. Chem.* 265: 17174~17179, 1990
- 8) CLOSSE, A. & R. HUGUENIN: Isolierung und strukturaufklärung von chlamydocin. *Helv. Chim. Acta* 57: 533~545, 1974
- 9) DECKER, T. & M.-L. LOHMANN-MATTHES: A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. *J. Immunol. Methods* 115: 61~69, 1988